1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
|
import numpy as np
import pandas as pd
from sklearn import metrics
from sklearn.model_selection import train_test_split
from lightgbm.sklearn import LGBMClassifier
from sklearn.metrics import accuracy_score
from lightgbm import plot_importance
from sklearn.model_selection import GridSearchCV
# 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns
# 我们利用Pandas自带的read_csv函数读取并转化为DataFrame格式
df = pd.read_csv('../Data/LOL/high_diamond_ranked_10min.csv')
# 利用.info()查看数据的整体信息
print(df.info())
# 进行简单的数据查看,我们可以利用.head()头部.tail()尾部
print(df.head())
print(df.tail())
# 标注标签并利用value_counts函数查看训练集标签的数量
y = df.blueWins
print(y.value_counts())
# 标注特征列,drop_cols中存放非特征列,然后丢弃
drop_cols = ['gameId', 'blueWins']
x = df.drop(drop_cols, axis=1)
# 对于特征进行一些统计描述
print(x.describe())
# 根据上面的描述,我们可以去除一些重复变量,比如只要知道蓝队是否拿到一血,
# 我们就知道红队有没有拿到,可以去除红队的相关冗余数据。
drop_cols = ['redFirstBlood','redKills','redDeaths',
'redGoldDiff','redExperienceDiff', 'blueCSPerMin',
'blueGoldPerMin','redCSPerMin','redGoldPerMin']
x.drop(drop_cols, axis=1, inplace=True)
# 减去平均数除以标准差相当于对原始数据进行了线性变换,没有改变数据之间的相
# 对位置,也没有改变数据的分布,只是数据的平均数变成0,标准差变成1。根本不
# 会变成正态分布,除非它本来就是。
data = x
data_std = (data - data.mean()) / data.std()
data = pd.concat([y, data_std.iloc[:, 0:9]], axis=1)
data = pd.melt(data, id_vars='blueWins',
var_name='Features', value_name='Values')
fig, ax = plt.subplots(1, 2, figsize=(15, 5))
# 绘制小提琴图
sns.violinplot(x='Features', y='Values', hue='blueWins', data=data, split=True,
inner='quart', ax=ax[0], palette='Blues')
fig.autofmt_xdate(rotation=45) # 将x轴每列的标号旋转45°
data = x
data_std = (data - data.mean()) / data.std()
data = pd.concat([y, data_std.iloc[:, 9:18]], axis=1)
data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')
# 绘制小提琴图
sns.violinplot(x='Features', y='Values', hue='blueWins',
data=data, split=True, inner='quart', ax=ax[1], palette='Blues')
fig.autofmt_xdate(rotation=45)
plt.show()
plt.figure(figsize=(18,14))
sns.heatmap(round(x.corr(),2), cmap='Blues', annot=True)
plt.show()
# 去除冗余特征
drop_cols = ['redAvgLevel','blueAvgLevel']
x.drop(drop_cols, axis=1, inplace=True)
sns.set(style='whitegrid', palette='muted')
# 构造两个新特征
x['wardsPlacedDiff'] = x['blueWardsPlaced'] - x['redWardsPlaced']
x['wardsDestroyedDiff'] = x['blueWardsDestroyed'] - x['redWardsDestroyed']
data = x[['blueWardsPlaced','blueWardsDestroyed',
'wardsPlacedDiff','wardsDestroyedDiff']].sample(1000)
data_std = (data - data.mean()) / data.std()
data = pd.concat([y, data_std], axis=1)
data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')
plt.figure(figsize=(10,6))
sns.swarmplot(x='Features', y='Values', hue='blueWins', data=data)
plt.xticks(rotation=45)
plt.show()
# 去除和眼位相关的特征
drop_cols = ['blueWardsPlaced','blueWardsDestroyed','wardsPlacedDiff',
'wardsDestroyedDiff','redWardsPlaced','redWardsDestroyed']
x.drop(drop_cols, axis=1, inplace=True)
x['killsDiff'] = x['blueKills'] - x['blueDeaths']
x['assistsDiff'] = x['blueAssists'] - x['redAssists']
x[['blueKills','blueDeaths','blueAssists',
'killsDiff','assistsDiff','redAssists']].hist(figsize=(12,10), bins=20)
plt.show()
data = x[['blueKills','blueDeaths','blueAssists',
'killsDiff','assistsDiff','redAssists']].sample(1000)
data_std = (data - data.mean()) / data.std()
data = pd.concat([y, data_std], axis=1)
data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')
plt.figure(figsize=(10,6))
sns.swarmplot(x='Features', y='Values', hue='blueWins', data=data)
plt.xticks(rotation=45)
plt.show()
data = pd.concat([y, x], axis=1).sample(500)
sns.pairplot(data, vars=['blueKills','blueDeaths','blueAssists',
'killsDiff','assistsDiff','redAssists'],
hue='blueWins')
plt.show()
x['dragonsDiff'] = x['blueDragons'] - x['redDragons']
x['heraldsDiff'] = x['blueHeralds'] - x['redHeralds']
x['eliteDiff'] = x['blueEliteMonsters'] - x['redEliteMonsters']
data = pd.concat([y, x], axis=1)
eliteGroup = data.groupby(['eliteDiff'])['blueWins'].mean()
dragonGroup = data.groupby(['dragonsDiff'])['blueWins'].mean()
heraldGroup = data.groupby(['heraldsDiff'])['blueWins'].mean()
fig, ax = plt.subplots(1,3, figsize=(15,4))
eliteGroup.plot(kind='bar', ax=ax[0])
dragonGroup.plot(kind='bar', ax=ax[1])
heraldGroup.plot(kind='bar', ax=ax[2])
print(eliteGroup)
print(dragonGroup)
print(heraldGroup)
plt.show()
x['towerDiff'] = x['blueTowersDestroyed'] - x['redTowersDestroyed']
data = pd.concat([y, x], axis=1)
towerGroup = data.groupby(['towerDiff'])['blueWins']
print(towerGroup.count())
print(towerGroup.mean())
figure, ax = plt.subplots(1, 2, figsize=(15, 5))
towerGroup.mean().plot(kind='line', ax=ax[0])
ax[0].set_title('Proportion of Blue Wins')
ax[0].set_ylabel('Proportion')
towerGroup.count().plot(kind='line', ax=ax[1])
ax[1].set_title('Count of Towers Destroyed')
ax[1].set_ylabel('Count')
# ---------------------------------利用 LightGBM 进行训练与预测----------------------------------
# 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
# 选择其类别为0和1的样本
data_target_part = y
data_features_part = x
# 测试集大小为20%,训练集大小为80%
x_train, x_test, y_train, y_test = train_test_split(data_features_part,
data_target_part,
test_size = 0.2,
random_state = 2020)
# 定义 LightGBM 模型
clf = LGBMClassifier()
# 在训练集上训练LightGBM模型
clf.fit(x_train, y_train)
# 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
# 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',
metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',
metrics.accuracy_score(y_test,test_predict))
# 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)
# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()
sns.barplot(y=data_features_part.columns, x=clf.feature_importances_)
# -------------------绘制对应列(即特征)的重要性图-----------------------
def estimate(model, data):
# sns.barplot(data.columns,model.feature_importances_)
ax1 = plot_importance(model, importance_type="gain")
ax1.set_title('gain')
ax2 = plot_importance(model, importance_type="split")
ax2.set_title('split')
plt.show()
def classes(data, label, test):
model = LGBMClassifier()
model.fit(data, label)
ans = model.predict(test)
estimate(model, data)
return ans
ans = classes(x_train, y_train, x_test)
pre = accuracy_score(y_test, ans)
print('acc=', accuracy_score(y_test, ans))
# 定义参数取值范围
learning_rate = [0.1, 0.3, 0.6]
feature_fraction = [0.5, 0.8, 1]
num_leaves = [16, 32, 64]
max_depth = [-1,3,5,8]
parameters = {'learning_rate': learning_rate,
'feature_fraction': feature_fraction,
'num_leaves': num_leaves,
'max_depth': max_depth}
model = LGBMClassifier(n_estimators = 50)
# 进行网格搜索
clf = GridSearchCV(model, parameters, cv=3,
scoring='accuracy', verbose=3, n_jobs=-1)
clf = clf.fit(x_train, y_train)
# 网格搜索后的最好参数为
print(clf.best_params_)
# 在训练集和测试集上分布利用最好的模型参数进行预测
# 定义带参数的 LightGBM模型
clf = LGBMClassifier(feature_fraction=1,
learning_rate=0.1,
max_depth=3,
num_leaves=16)
# 在训练集上训练LightGBM模型
clf.fit(x_train, y_train)
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
# 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',
metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',
metrics.accuracy_score(y_test,test_predict))
# 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict, y_test)
print('The confusion matrix result:\n', confusion_matrix_result)
# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()
|